Epigenetic regulation of axon and dendrite growth. Frontiers in molecular neuroscience Trakhtenberg, E. F., Goldberg, J. L. 2012; 5: 24-?

Abstract

Neuroregenerative therapies for central nervous system (CNS) injury, neurodegenerative disease, or stroke require axons of damaged neurons to grow and re-innervate their targets. However, mature mammalian CNS neurons do not regenerate their axons, limiting recovery in these diseases. Although neurons' intrinsic capacity for axon growth may depend in part on the panoply of expressed transcription factors, epigenetic factors such as the accessibility of DNA and organization of chromatin are required for downstream genes to be transcribed. Thus, a potential approach to overcoming regenerative failure focuses on the epigenetic mechanisms regulating regenerative gene expression in the CNS. Here we review molecular mechanisms regulating the epigenetic state of DNA through chromatin modifications, their implications for regulating axon and dendrite growth, and important new directions for this field of study.

View details for DOI 10.3389/fnmol.2012.00024

View details for PubMedID 22403528

View details for PubMedCentralID PMC3290832