Skip to main content
Human Striatal Dopaminergic and Regional Serotonergic Synaptic Degeneration with Lewy Body Disease and Inheritance of APOE e4. American journal of pathology Postupna, N., Latimer, C. S., Larson, E. B., Sherfield, E., Paladin, J., Shively, C. A., Jorgensen, M. J., Andrews, R. N., Kaplan, J. R., Crane, P. K., Montine, K. S., Craft, S., Keene, C. D., Montine, T. J. 2017

Abstract

Cognitive impairment in older individuals is a complex trait that in population-based studies most commonly derives from an individually varying mixture of Alzheimer disease, Lewy body disease, and vascular brain injury. We investigated the molecular composition of synaptic particles from three sources: consecutive rapid autopsy brains from the Adult Changes in Thought Study, a population-based cohort; four aged nonhuman primate brains optimally processed for molecular investigation; and targeted replacement transgenic mice homozygous for APOE e4. Our major goal was to characterize the molecular composition of human synaptic particles in regions of striatum and prefrontal cortex. We performed flow cytometry to measure six markers of synaptic subtypes, as well as amyloid ß 42 and paired helical filament tau. Our results showed selective degeneration of dopaminergic terminals throughout the striatum in individuals with Lewy body disease, and serotonergic degeneration in human ventromedial caudate nucleus from individuals with an APOE e4 allele. Similar results were seen in mouse caudate nucleus homozygous for APOE e4 via targeted replacement. Together, extension of these clinical, pathologic, and genetic associations from tissue to the synaptic compartment of cerebral cortex and striatum strongly supports our approach for accurately observing the molecular composition of human synapses by flow cytometry.

View details for DOI 10.1016/j.ajpath.2016.12.010

View details for PubMedID 28212814

View details for PubMedCentralID PMC5397713