SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer ONCOTARGET Li, X., Wu, J. B., Li, Q., Shigemura, K., Chung, L. W., Huang, W. 2016; 7 (11): 12869-12884

Abstract

Sterol regulatory element-binding protein-2 (SREBP-2) transcription factor mainly controls cholesterol biosynthesis and homeostasis in normal cells. The role of SREBP-2 in lethal prostate cancer (PCa) progression remains to be elucidated. Here, we showed that expression of SREBP-2 was elevated in advanced pathologic grade and metastatic PCa and significantly associated with poor clinical outcomes. Biofunctional analyses demonstrated that SREBP-2 induced PCa cell proliferation, invasion and migration. Furthermore, overexpression of SREBP-2 increased the PCa stem cell population, prostasphere-forming ability and tumor-initiating capability, whereas genetic silencing of SREBP-2 inhibited PCa cell growth, stemness, and xenograft tumor growth and metastasis. Clinical and mechanistic data showed that SREBP-2 was positively correlated with c-Myc and induced c-Myc activation by directly interacting with an SREBP-2-binding element in the 5'-flanking c-Myc promoter region to drive stemness and metastasis. Collectively, these clinical and experimental results reveal a novel role of SREBP-2 in the induction of a stem cell-like phenotype and PCa metastasis, which sheds light on translational potential by targeting SREBP-2 as a promising therapeutic approach in PCa.

View details for Web of Science ID 000375679600084

View details for PubMedID 26883200