Foxp3(+) regulatory T cells maintain the bone marrow microenvironment for B cell lymphopoiesis NATURE COMMUNICATIONS Pierini, A., Nishikii, H., Baker, J., Kimura, T., Kwon, H., Pan, Y., Chen, Y., Alvarez, M., Strober, W., Velardi, A., Shizuru, J. A., Wu, J. Y., Chiba, S., Negrin, R. S. 2017; 8

Abstract

Foxp3(+) regulatory T cells (Treg cells) modulate the immune system and maintain self-tolerance, but whether they affect haematopoiesis or haematopoietic stem cell (HSC)-mediated reconstitution after transplantation is unclear. Here we show that B-cell lymphopoiesis is impaired in Treg-depleted mice, yet this reduced B-cell lymphopoiesis is rescued by adoptive transfer of affected HSCs or bone marrow cells into Treg-competent recipients. B-cell reconstitution is abrogated in both syngeneic and allogeneic transplantation using Treg-depleted mice as recipients. Treg cells can control physiological IL-7 production that is indispensable for normal B-cell lymphopoiesis and is mainly sustained by a subpopulation of ICAM1(+) perivascular stromal cells. Our study demonstrates that Treg cells are important for B-cell differentiation from HSCs by maintaining immunological homoeostasis in the bone marrow microenvironment, both in physiological conditions and after bone marrow transplantation.

View details for DOI 10.1038/ncomms15068

View details for PubMedID 28485401