Changes in Local Bone Density in Early Thumb Carpometacarpal Joint Osteoarthritis. The Journal of hand surgery Schreiber, J. J., McQuillan, T. J., Halilaj, E. n., Crisco, J. J., Weiss, A. P., Patel, T. n., Kenney, D. n., Ladd, A. L. 2017

Abstract

Thumb carpometacarpal (CMC) osteoarthritis (OA) represents a major source of functional morbidity. The effects of early CMC OA on loading and use patterns potentially lead to changes in local bone density and microarchitecture. Hounsfield units (HU), a quantitative attenuation coefficient obtained from computed tomography (CT) scans, have been shown to be a reliable marker of bone density. We hypothesized that early CMC OA is associated with lower local bone density about the CMC joint as assessed by HU.We examined HU units from CT scans in 23 asymptomatic subjects and 91 patients with early CMC OA. The HU measurements were obtained within cancellous portions of the trapezium, capitate, first and third metacarpal bases, and distal radius. Linear regression models, with age and sex included as covariates, were used to assess the relationship between CMC OA and HU values at each anatomical site.Early OA patients had significantly lower HU than asymptomatic subjects within the trapezium (mean, 377 HU vs 436 HU) and first metacarpal bases (265 HU vs 324 HU). No significant group differences were noted at the capitate, third metacarpal, or distal radius. Male sex and younger age were associated with significantly higher HU at all the anatomical sites, except the first metacarpal base, where age had no significant effect.Subjects presenting with early CMC OA had significantly lower bone density as assessed with HU at the thumb CMC joint (trapezium and first metacarpal base). Early thumb CMC OA and discomfort may lead to diminished loading across the basal joint, producing focal disuse osteopenia. These findings in symptomatic early arthritis suggest a relationship between symptoms, functional use of the CMC joint, and local bone density.Diagnostic II.

View details for PubMedID 29029863