New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Prolonged survival of transplanted stem cells after ischaemic injury via the slow release of pro-survival peptides from a collagen matrix
Prolonged survival of transplanted stem cells after ischaemic injury via the slow release of pro-survival peptides from a collagen matrix Nature Biomedical Engineering Lee, A. S., Inayathullah, ., Lijkwan, . A., Zhao, X., Sun, W., Park, S., Hong, W. X., Parekh, M. B., Malkovskiy, A. V., Lau, E., Qin, X., Pothineni,, . R., Sanchez-Freire, ., Kooreman, N. G., Ebert, A. D., Chan, C. K., Nguyen, P. K., Rajadas, J., Wu, J. C. 2018; 2 (2): 104–13Abstract
Stem-cell-based therapies hold considerable promise for regenerative medicine. However, acute donor-cell death within several weeks after cell delivery remains a critical hurdle for clinical translation. Co-transplantation of stem cells with pro-survival factors can improve cell engraftment, but this strategy has been hampered by the typically short half-lives of the factors and by the use of Matrigel and other scaffolds that are not chemically defined. Here, we report a collagen-dendrimer biomaterial crosslinked with pro-survival peptide analogues that adheres to the extracellular matrix and slowly releases the peptides, significantly prolonging stem cell survival in mouse models of ischaemic injury. The biomaterial can serve as a generic delivery system to improve functional outcomes in cell-replacement therapy.
View details for DOI 10.1038/s41551-018-0191-4
View details for PubMedCentralID PMC5927627