New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Biallelic Mutations in ATP5F1D, which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder
Biallelic Mutations in ATP5F1D, which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder AMERICAN JOURNAL OF HUMAN GENETICS Olahova, M., Yoon, W., Thompson, K., Jangam, S., Fernandez, L., Davidson, J. M., Kyle, J. E., Grove, M. E., Fisk, D. G., Kohler, J. N., Holmes, M., Dries, A. M., Huang, Y., Zhao, C., Contrepois, K., Zappala, Z., Fresard, L., Waggott, D., Zink, E. M., Kim, Y., Heyman, H. M., Stratton, K. G., Webb-Robertson, B. M., Snyder, M., Merker, J. D., Montgomery, S. B., Fisher, P. G., Feichtinger, R. G., Mayr, J. A., Hall, J., Barbosa, I. A., Simpson, M. A., Deshpande, C., Waters, K. M., Koeller, D. M., Metz, T. O., Morris, A. A., Schelley, S., Cowan, T., Friederich, M. W., McFarland, R., Van Hove, J. K., Enns, G. M., Yamamoto, S., Ashley, E. A., Wangler, M. F., Taylor, R. W., Bellen, H. J., Bernstein, J. A., Wheeler, M. T., Undiagnosed Diseases Network 2018; 102 (3): 494–504Abstract
ATP synthase, H+ transporting, mitochondrial F1 complex, d subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.245C>T (p.Pro82Leu), presented with recurrent metabolic decompensation starting in the neonatal period, and subject 2, homozygous for c.317T>G (p.Val106Gly), presented with acute encephalopathy in childhood. Cultured skin fibroblasts from these individuals exhibited impaired assembly of F1FO ATP synthase and subsequent reduced complex V activity. Cells from subject 1 also exhibited a significant decrease in mitochondrial cristae. Knockdown of Drosophila ATPsynd, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation.
View details for PubMedID 29478781