Abstract
Purpose: T cells infiltrating follicular lymphoma (FL) tumors are considered dysfunctional, yet the optimal target for immune checkpoint blockade is unknown. Characterizing coinhibitory receptor expression patterns and signaling responses in FL T-cell subsets might reveal new therapeutic targets.Experimental Design: Surface expression of 9 coinhibitory receptors governing T-cell function was characterized in T-cell subsets from FL lymph node tumors and from healthy donor tonsils and peripheral blood samples, using high-dimensional flow cytometry. The results were integrated with T-cell receptor (TCR)-induced signaling and cytokine production. Expression of T-cell immunoglobulin and ITIM domain (TIGIT) ligands was detected by immunohistochemistry.Results: TIGIT was a frequently expressed coinhibitory receptor in FL, expressed by the majority of CD8 T effector memory cells, which commonly coexpressed exhaustion markers such as PD-1 and CD244. CD8 FL T cells demonstrated highly reduced TCR-induced phosphorylation (p) of ERK and reduced production of IFN?, while TCR proximal signaling (p-CD3?, p-SLP76) was not affected. The TIGIT ligands CD112 and CD155 were expressed by follicular dendritic cells in the tumor microenvironment. Dysfunctional TCR signaling correlated with TIGIT expression in FL CD8 T cells and could be fully restored upon in vitro culture. The costimulatory receptor CD226 was downregulated in TIGIT+ compared with TIGIT- CD8 FL T cells, further skewing the balance toward immunosuppression.Conclusions: TIGIT blockade is a relevant strategy for improved immunotherapy in FL. A deeper understanding of the interplay between coinhibitory receptors and key T-cell signaling events can further assist in engineering immunotherapeutic regimens to improve clinical outcomes of cancer patients. Clin Cancer Res; 24(4); 870-81. ©2017 AACR.
View details for DOI 10.1158/1078-0432.CCR-17-2337
View details for Web of Science ID 000425191300015
View details for PubMedID 29217528
View details for PubMedCentralID PMC5815910