Making sense of antisense oligonucleotides: A narrative review MUSCLE & NERVE Goyal, N., Narayanaswami, P. 2018; 57 (3): 356–70

Abstract

Synthetic nucleic acid sequences that bind to ribonucleic acid (RNA) through Watson-Crick base pairing are known as antisense oligonucleotides (ASOs) because they are complementary to "sense strand" nucleic acids. ASOs bind to selected sequences of RNA and regulate the expression of genes by several mechanisms depending on their chemical properties and targets. They can be used to restore deficient protein expression, reduce the expression of a toxic protein, modify functional effects of proteins, or reduce toxicity of mutant proteins. Two ASOs were approved by the U.S. Food and Drug Administration in 2016: eteplirsen for Duchenne muscular dystrophy and nusinersen for spinal muscular atrophy. Clinical trials in amyotrophic lateral sclerosis and familial amyloid polyneuropathy are ongoing. We review the chemistry, pharmacology, and mechanisms of action of ASOs, preclinical data, and clinical trials in neuromuscular diseases and discuss some ethical, regulatory, and policy considerations in the clinical development and use of ASOs. Muscle Nerve 57: 356-370, 2018.

View details for PubMedID 29105153