Transient Osmotic Perturbation Causes Long-Term Alteration to the Gut Microbiota. Cell Tropini, C., Moss, E. L., Merrill, B. D., Ng, K. M., Higginbottom, S. K., Casavant, E. P., Gonzalez, C. G., Fremin, B., Bouley, D. M., Elias, J. E., Bhatt, A. S., Huang, K. C., Sonnenburg, J. L. 2018; 173 (7): 1742

Abstract

Osmotic diarrhea is a prevalent condition in humans caused by food intolerance, malabsorption, and widespread laxative use. Here, we assess the resilience of the gut ecosystem to osmotic perturbation at multiple length and timescales using mice as model hosts. Osmotic stress caused reproducible extinction of highly abundant taxa and expansion of less prevalent members in human and mouse microbiotas. Quantitative imaging revealed decimation of the mucus barrier during osmotic perturbation, followed by recovery. The immune system exhibited temporary changes in cytokine levels and a lasting IgG response against commensal bacteria. Increased osmolality prevented growth of commensal strains invitro, revealing one mechanism contributing to extinction. Environmental availability of microbiota members mitigated extinction events, demonstrating how species reintroduction can affect community resilience. Our findings (1) demonstrate that even mild osmotic diarrhea can cause lasting changes to the microbiota and host and (2) lay the foundation for interventions that increase system-wide resilience.

View details for PubMedID 29906449