High-Definition Fiber Tractography in Evaluation and Surgical Planning of Thalamopeduncular Pilocytic Astrocytomas in Pediatric Population: Case Series and Review of Literature WORLD NEUROSURGERY Celtikci, E., Celtikci, P., Fernandes-Cabral, D., Ucar, M., Fernandez-Miranda, J., Borcek, A. 2017; 98: 463–69

Abstract

Thalamopeduncular tumors (TPTs) of childhood present a challenge for neurosurgeons due to their eloquent location. Preoperative fiber tracking provides total or near-total resection, without additional neurologic deficit. High-definition fiber tractography (HDFT) is an advanced white matter imaging technique derived from magnetic resonance imaging diffusion data, shown to overcome the limitations of diffusion tensor imaging. We aimed to investigate alterations of corticospinal tract (CST) and medial lemniscus (ML) caused by TPTs and to demonstrate the application of HDFT in preoperative planning.Three pediatric patients with TPTs were enrolled. CSTs and MLs were evaluated for displacement, infiltration, and disruption. The relationship of these tracts to tumors was identified and guided surgical planning. Literature was reviewed for publications on pediatric thalamic and TPTs that used diffusion imaging.Two patients had histologic diagnosis of pilocytic astrocytoma. One patient whose imaging suggested a low-grade glioma was managed conservatively. All tracts were displaced (1 CST anteriorly, 2 CSTs, 1 ML anteromedially, 1 ML medially, and 1 ML posteromedially). Literature review revealed 2 publications with 15 pilocytic astrocytoma cases, which investigated CST only. The condition of sensory pathway or anteromedial displacement of the CST in these tumors was not reported previously.Displacement patterns of the perilesional fiber bundles by TPTs are not predictable. Fiber tracking, preferably HDFT, should be part of preoperative planning to achieve maximal extent of resection for longer survival rates in this young group of patients, while preserving white matter tracts and thus quality of life.

View details for PubMedID 27888085