New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo
Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo HEPATOLOGY Zhan, S. S., jiang, J. X., Wu, J., Halsted, C., Friedman, S. L., Zern, M. A., Torok, N. J. 2006; 43 (3): 435-443Abstract
Hepatic stellate cell activation is a main feature of liver fibrogenesis. We have previously shown that phagocytosis of apoptotic bodies by stellate cells induces procollagen alpha1 (I) and transforming growth factor beta (TGF-beta) expression in vitro. Here we have further investigated the downstream effects of phagocytosis by studying NADPH oxidase activation and its link to procollagen alpha1 (I) and TGF-beta1 expression in an immortalized human stellate cell line and in several models of liver fibrosis. Phagocytosis of apoptotic bodies in LX-1 cells significantly increased superoxide production both in the extracellular and intracellular milieus. By confocal microscopy of LX-1 cells, increased intracellular reactive oxygen species (ROS) were detected in the cells with intracellular apoptotic bodies, and immunohistochemistry documented translocation of the NADPH oxidase p47phox subunit to the membrane. NADPH oxidase activation resulted in upregulation of procollagen alpha1 (I); in contrast, TGF-beta1 expression was independent of NADPH oxidase activation. This was also confirmed by using siRNA to inhibit TGF-beta1 production. In addition, with EM studies we showed that phagocytosis of apoptotic bodies by stellate cells occurs in vivo. In conclusion, these data provide a mechanistic link between phagocytosis of apoptotic bodies, production of oxidative radicals, and the activation of hepatic stellate cells.
View details for DOI 10.1002/hep.21093
View details for Web of Science ID 000235911200009
View details for PubMedID 16496318