Characterization of brain dysfunction induced by bacterial lipopeptides that alter neuronal activity and network in rodent brains. The Journal of neuroscience : the official journal of the Society for Neuroscience Kim, K., Zamaleeva, A. I., Woo Lee, Y., Ahmed, M. R., Kim, E., Lee, H., Raveendra Pothineni, V., Tao, J., Rhee, S., Jayakumar, M., Inayathullah, M., Sivanesan, S., Red-Horse, K., Palmer, T. D., Park, J., Madison, D. V., Lee, H., Rajadas, J. 2018

Abstract

The immunopathological states of the brain induced by bacterial lipoproteins have been well-characterized by employing biochemical and histological assays. However, these studies have limitations in determining functional states of damaged brains involving aberrant synaptic activity and network, which makes it difficult to diagnose brain disorders during bacterial infection. To address this, we investigated the effect of Pam3CSK4 (PAM), a synthetic bacterial lipopeptide, on synaptic dysfunction of female mice brains and cultured neurons in parallel. Our functional brain imaging using PET with [18F]-FDG and [18F]-FMZ revealed the brain dysfunction induced by PAM is closely aligned to disruption of neurotransmitter-related neuronal activity and functional correlation in the region of the limbic system rather than to decrease of metabolic activity of neurons in the injection area. This finding was verified by in vivo tissue experiments that analyzed synaptic and dendritic alterations in the regions where PET imaging showed abnormal neuronal activity and network. Recording of synaptic activity also revealed that PAM reorganized synaptic distribution and decreased synaptic plasticity in hippocampus. Further study using in vitro neuron cultures demonstrated that PAM decreased the number of presynapses and the frequency of mEPSC, which suggests PAM disrupts neuronal function by damaging presynapses exclusively. We also showed PAM caused aggregation of synapses around dendrites, which may have caused no significant change in expression level of synaptic proteins while synaptic number and function was impaired by PAM. New findings of this study could provide a useful guide for diagnosis and treatment of brain disorders specific to bacterial infection.SIGNIFICANCE STATEMENTIt is challenging to diagnose brain disorders caused by bacterial infection because neural damage induced by bacterial products involves non-specific neurological symptoms, which is rarely detected by laboratory tests with low spatiotemporal resolution. To better understand brain pathology, it is essential to detect functional abnormalities of brain over time. To this end, we investigated characteristic patterns of altered neuronal integrity and functional correlation between various regions in mice brains injected with bacterial lipopeptides by using PET with a goal to apply new findings to diagnosis of brain disorder specific to bacterial infection. In addition, we analyzed altered synaptic density and function using both in vivo and in vitro experimental models to understand how bacterial lipopeptides impair brain function and network.

View details for PubMedID 30381406