REGULATION OF ATRIAL AUTONOMIC RECEPTORS IN EXPERIMENTAL CYANOTIC HEART-DISEASE AMERICAN JOURNAL OF PHYSIOLOGY Doshi, R., Strandness, E., Bernstein, D. 1991; 261 (4): H1135-H1140

Abstract

During chronic hypoxemia, left ventricular beta-adrenergic receptor density is decreased and a dissociation occurs between increased chronotropic and decreased inotropic responses to chronically elevated sympathetic tone. To determine whether this dissociation was related to alterations in autonomic receptor populations in the right atrium, we studied right atrial cholinergic and beta-adrenergic receptors in chronically hypoxemic newborn lambs and in normoxemic controls. Heart rate response was determined by infusing isoproterenol at 0.1 or 0.5 microgram.kg-1.min-1. Muscarinic receptors were quantified with [3H]quinuclidinyl benzilate and beta-adrenergic receptors with [125I]iodocyanopindolol. Competition with ICI 118,551 was used to determine beta 1- vs. beta 2-receptor subtypes. In the hypoxemic lambs, isoproterenol resulted in a lesser percentage increase in heart rate (hypoxemic, 46 +/- 6% vs. control, 89 +/- 17%, P less than 0.05); however, because baseline heart rate was higher in the hypoxemic lambs (213 +/- 7 vs. 177 +/- 12 beats/min, P less than 0.05), maximal heart rate responses were similar (310 +/- 7 vs. 326 +/- 6 beats/min, NS). There was no change in receptor density or affinity of either muscarinic or beta-adrenergic receptors and no change in the proportion of beta 1- vs. beta 2-receptor subtypes. Thus the dissociation between the chronotropic and inotropic responses to chronic hypoxemia may be in part secondary to a differential regulation of beta-adrenergic receptors between the left ventricle and the right atrium.

View details for Web of Science ID A1991GK86900023

View details for PubMedID 1656786