Microglia are effector cells of CD47-SIRPalpha antiphagocytic axis disruption against glioblastoma. Proceedings of the National Academy of Sciences of the United States of America Hutter, G., Theruvath, J., Graef, C. M., Zhang, M., Schoen, M. K., Manz, E. M., Bennett, M. L., Olson, A., Azad, T. D., Sinha, R., Chan, C., Assad Kahn, S., Gholamin, S., Wilson, C., Grant, G., He, J., Weissman, I. L., Mitra, S. S., Cheshier, S. H. 2019

Abstract

Glioblastoma multiforme (GBM) is a highly aggressive malignant brain tumor with fatal outcome. Tumor-associated macrophages and microglia (TAMs) have been found to be major tumor-promoting immune cells in the tumor microenvironment. Hence, modulation and reeducation of tumor-associated macrophages and microglia in GBM is considered a promising antitumor strategy. Resident microglia and invading macrophages have been shown to have distinct origin and function. Whereas yolk sac-derived microglia reside in the brain, blood-derived monocytes invade the central nervous system only under pathological conditions like tumor formation. We recently showed that disruption of the SIRPalpha-CD47 signaling axis is efficacious against various brain tumors including GBM primarily by inducing tumor phagocytosis. However, most effects are attributed to macrophages recruited from the periphery but the role of the brain resident microglia is unknown. Here, we sought to utilize a model to distinguish resident microglia and peripheral macrophages within the GBM-TAM pool, using orthotopically xenografted, immunodeficient, and syngeneic mouse models with genetically color-coded macrophages (Ccr2 RFP) and microglia (Cx3cr1 GFP). We show that even in the absence of phagocytizing macrophages (Ccr2 RFP/RFP), microglia are effector cells of tumor cell phagocytosis in response to anti-CD47 blockade. Additionally, macrophages and microglia show distinct morphological and transcriptional changes. Importantly, the transcriptional profile of microglia shows less of an inflammatory response which makes them a promising target for clinical applications.

View details for PubMedID 30602457