Hydrogel-based delivery of Il-10 improves treatment of bleomycin-induced lung fibrosis in mice. Biomaterials Shamskhou, E. A., Kratochvil, M. J., Orcholski, M. E., Nagy, N. n., Kaber, G. n., Steen, E. n., Balaji, S. n., Yuan, K. n., Keswani, S. n., Danielson, B. n., Gao, M. n., Medina, C. n., Nathan, A. n., Chakraborty, A. n., Bollyky, P. L., De Jesus Perez, V. A. 2019; 203: 52–62

Abstract

Idiopathic pulmonary fibrosis (IPF) is a life-threatening progressive lung disorder with limited therapeutic options. While interleukin-10 (IL-10) is a potent anti-inflammatory and anti-fibrotic cytokine, its utility in treating lung fibrosis has been limited by its short half-life. We describe an innovative hydrogel-based approach to deliver recombinant IL-10 to the lung for the prevention and reversal of pulmonary fibrosis in a mouse model of bleomycin-induced lung injury. Our studies show that a hyaluronan and heparin-based hydrogel system locally delivers IL-10 by capitalizing on the ability of heparin to reversibly bind IL-10 without bleeding or other complications. This formulation is significantly more effective than soluble IL-10 for both preventing and reducing collagen deposition in the lung parenchyma after 7 days of intratracheal administration. The anti-fibrotic effect of IL-10 in this system is dependent on suppression of TGF-ß driven collagen production by lung fibroblasts and myofibroblasts. We conclude that hydrogel-based delivery of IL-10 to the lung is a promising therapy for fibrotic lung disorders.

View details for PubMedID 30852423