Thrombin activation of factor XI on activated platelets requires the interaction of factor XI and platelet glycoprotein Ib alpha with thrombin anion-binding exosites I and II, respectively. The Journal of biological chemistry Yun, T. H., Baglia, F. A., Myles, T., Navaneetham, D., López, J. A., Walsh, P. N., Leung, L. L. 2003; 278 (48): 48112-9

Abstract

Activation of factor XI (FXI) by thrombin on stimulated platelets plays a physiological role in hemostasis, providing additional thrombin generation required in cases of severe hemostatic challenge. Using a collection of 53 thrombin mutants, we identified 16 mutants with <50% of the wild-type thrombin FXI-activating activity in the presence of dextran sulfate. These mutants mapped to anion-binding exosite (ABE) I, ABE-II, the Na+-binding site, and the 50-insertion loop. Only the ABE-II mutants showed reduced binding to dextran sulfate-linked agarose. Selected thrombin mutants in ABE-I (R68A, R70A, and R73A), ABE-II (R98A, R245A, and K248A), the 50-insertion loop (W50A), and the Na+-binding site (E229A and R233A) with <10% of the wild-type activity also showed a markedly reduced ability to activate FXI in the presence of stimulated platelets. The ABE-I, 50-insertion loop, and Na+-binding site mutants had impaired binding to FXI, but normal binding to glycocalicin, the soluble form of glycoprotein Ibalpha (GPIb alpha). In contrast, the ABE-II mutants were defective in binding to glycocalicin, but displayed normal binding to FXI. Our data support a quaternary complex model of thrombin activation of FXI on stimulated platelets. Thrombin bound to one GPIb alpha molecule, via ABE-II on its posterior surface, is properly oriented for its activation of FXI bound to a neighboring GPI alpha molecule, via ABE-I on its anterior surface. GPIb alpha plays a critical role in the co-localization of thrombin and FXI and the resultant efficient activation of FXI.

View details for DOI 10.1074/jbc.M306925200

View details for PubMedID 12968031