Skip to main content
Mechanical and Microstructural Properties of Native Pediatric Posterior Cruciate and Collateral Ligaments. Orthopaedic journal of sports medicine Schmidt, E. C., Chin, M., Aoyama, J. T., Ganley, T. J., Shea, K. G., Hast, M. W. 2019; 7 (2): 2325967118824400

Abstract

Although anterior cruciate ligament (ACL) tears have received the most attention, the medial collateral ligament (MCL) is thought to be the most commonly injured knee ligament overall. The lateral collateral ligament (LCL) and posterior collateral ligament (PCL) are less frequently compromised but can be involved in severe multiligament injuries. The paucity of information on the native properties of these ligaments in the pediatric population hinders the overall optimization of treatment for these injuries.To characterize the mechanical and microstructural properties of pediatric MCLs, LCLs, and PCLs using a rare cadaveric cohort (mean age, 9.2 years).Descriptive laboratory study.MCLs, LCLs, and PCLs were harvested from 5 fresh-frozen pediatric knee specimens (3 male, 2 female) and were subjected to a tensile loading protocol. A subset of contralateral tissues from a single donor was analyzed using bright-field, polarized light, and transmission electron microscopy to measure collagen fiber morphology.The pediatric MCL exhibited values for ultimate stress (11.7 ± 6.7 MPa), ultimate strain (18.2% ± 6.8%), and the Young modulus (93.7 ± 56.5 MPa) that were similar to values for the LCL (11.4 ± 11.5 MPa, 27.7% ± 12.9%, and 64.4 ± 76.6 MPa, respectively). The PCL demonstrated decreased ultimate stress (4.2 ± 1.8 MPa), increased ultimate strain (28.8% ± 11.9%), and a decreased Young modulus (19.8 ± 10.4 MPa) when compared with the MCL and LCL. All 3 ligaments had similar mean crimp wavelengths (MCL, 32.8 ± 3.6 µm; LCL, 27.2 ± 3.5 µm; PCL, 25.8 ± 3.5 µm) and collagen fibril diameters (MCL, 88.0 ± 26.0 nm; LCL, 93.3 ± 34.6 nm; PCL, 90.9 ± 34.0 nm); however, the fibril distribution profiles exhibited different modalities.The pediatric MCL and LCL possessed similar mechanical properties, while the pediatric PCL was weaker but capable of withstanding higher amounts of strain. All 3 of these pediatric structures were weaker than what has been reported in studies with adult cohorts.Results from this study can be considered preliminary mechanical and microstructural data for healthy pediatric collateral and posterior cruciate ligaments that can be used to guide further laboratory and clinical research.

View details for DOI 10.1177/2325967118824400

View details for PubMedID 30775386

View details for PubMedCentralID PMC6362518