Articular cartilage of the knee: Rapid three-dimensional MR imaging at 3.0 T with IDEAL balanced steady-State free precession - Initial experience RADIOLOGY Gold, G. E., Reeder, S. B., Yu, H., Kornaat, P., Shimakawa, A. S., Johnson, J. W., Pelc, N. J., Beaulieu, C. F., Brittain, J. H. 2006; 240 (2): 546-551

Abstract

Institutional review board approval and informed consent were obtained for this HIPAA-compliant study. In this study, iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) balanced steady-state free precession (bSSFP), fat-suppressed bSSFP, and fat-suppressed spoiled gradient-echo (GRE) sequences for 3.0-T magnetic resonance (MR) imaging of articular knee cartilage were prospectively compared in five healthy volunteers. Cartilage and fluid signal-to-noise ratio (SNR), cartilage-fluid contrast-to-noise ratio (CNR), SNR efficiency, CNR efficiency, image quality, and fat suppression were compared. Fat-suppressed bSSFP and IDEAL bSSFP had higher SNR efficiency of cartilage (P < .01) than did GRE. IDEAL bSSFP had higher cartilage-fluid CNR efficiency than did fat-suppressed bSSFP or GRE (P < .01). Fat-suppressed bSSFP and IDEAL bSSFP had higher image quality than did GRE (P < .01). GRE and IDEAL bSSFP had significantly better fat-water separation or fat saturation than did fat-suppressed bSSFP (P < .05). IDEAL bSSFP is a promising method for imaging articular knee cartilage.

View details for DOI 10.1148/radiol.2402050288

View details for Web of Science ID 000239242600029

View details for PubMedID 16801369