Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart CELL Wu, S. M., Fujiwara, Y., Cibulsky, S. M., Clapham, D. E., Lien, C., Schultheiss, T. M., Orkin, S. H. 2006; 127 (6): 1137-1150

Abstract

Despite recent advances in delineating the mechanisms involved in cardiogenesis, cellular lineage specification remains incompletely understood. To explore the relationship between developmental fate and potential, we isolated a cardiac-specific Nkx2.5(+) cell population from the developing mouse embryo. The majority of these cells differentiated into cardiomyocytes and conduction system cells. Some, surprisingly, adopted a smooth muscle fate. To address the clonal origin of these lineages, we isolated Nkx2.5(+) cells from in vitro differentiated murine embryonic stem cells and found approximately 28% of these cells expressed c-kit. These c-kit(+) cells possessed the capacity for long-term in vitro expansion and differentiation into both cardiomyocytes and smooth muscle cells from a single cell. We confirmed these findings by isolating c-kit(+)Nkx2.5(+) cells from mouse embryos and demonstrated their capacity for bipotential differentiation in vivo. Taken together, these results support the existence of a common precursor for cardiovascular lineages in the mammalian heart.

View details for DOI 10.1016/j.cell.2006.10.028

View details for Web of Science ID 000242991000013

View details for PubMedID 17123591