Independent phase modulation for efficient dual-band 3D imaging MAGNETIC RESONANCE IN MEDICINE Hargreaves, B. A., Cunningham, C. H., Pauly, J. M., Daniel, B. L. 2007; 57 (4): 798-802


Certain applications of MRI, such as bilateral breast imaging, require simultaneous imaging of multiple volumes. Although image data can be acquired sequentially, the SNR is often improved if both slabs are excited and imaged together, typically with phase encoding across a volume including both slabs and the space between them. The use of independent phase modulation of multiple slabs eliminates the need to encode empty space between slabs, which can result in a significant time reduction. Each slab is excited with a phase proportional to phase-encode number such that the slab positions in the acquired data are shifted to reduce empty space. With careful consideration this technique is compatible with different pulse sequences (e.g., spin-echo, gradient-echo, RF spoiling, and balanced SSFP (bSSFP)) and acceleration strategies (e.g., partial k-space and parallel imaging). This technique was demonstrated in phantoms and applied to bilateral breast imaging, where scan times were reduced by 20-30%.

View details for DOI 10.1002/mrm.21180

View details for Web of Science ID 000245474600019

View details for PubMedID 17390355