New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
A laminin-collagen complex drives human epidermal carcinogenesis through phosphoinositol-3-kinase activation
A laminin-collagen complex drives human epidermal carcinogenesis through phosphoinositol-3-kinase activation CANCER RESEARCH Waterman, E. A., Sakai, N., Nguyen, N. T., Horst, B. A., Veitch, D. P., Dey, C. N., Ortiz-Urda, S., Khavari, P. A., Marinkovich, M. P. 2007; 67 (9): 4264-4270Abstract
Laminin-332 (formerly laminin-5) and collagen VII are basement membrane proteins expressed at the invasive front of human squamous cell carcinoma (SCC) tumors. These proteins have protumorigenic properties, but whether laminin-332 and collagen VII promote SCC tumors by providing adhesion or other nonadhesive extracellular cues, or whether laminin-332 and collagen VII interact together in this process remains unknown. In this study, we examined the role of these molecules by a structural approach using an in vivo model of human SCC tumorigenesis. Here, we show that individual domains (VI and V-III) on the laminin-332 beta3 chain provide distinct and highly divergent cell adhesion and tumor-promoting functions. We found that laminin beta3 domain VI provided a critical role in the assembly of stable adhesion complexes, but this domain was not required in SCC tumors. Instead, we found that laminin beta3 domain V-III played an essential role in SCC carcinogenesis/invasion through binding to collagen VII, which in turn, led to phosphoinositol-3-kinase activation and protection from apoptosis. Overexpression of constitutively active p110 phosphoinositol-3-kinase subunit was sufficient to restore invasion and tumorigenesis in transformed cells lacking laminin-332/collagen VII interaction in a manner independent of cellular adhesion. These studies show distinctive adhesive and signaling functions in individual domains of laminin-332, one which is required for normal epithelial adhesion and one which is required for SCC tumorigenesis. This uncoupling of stable adhesion from tumor progression in our studies suggests that laminin-332/collagen VII interaction promotes epidermal carcinogenesis through signaling rather than adhesion.
View details for DOI 10.1158/0008-5472.CAN-06-4141
View details for Web of Science ID 000246330300034
View details for PubMedID 17483338