Fabrication of multi-layered biodegradable drug delivery device based on micro-structuring of PLGA polymers BIOMEDICAL MICRODEVICES Ryu, W. H., Vyakarnam, M., Greco, R. S., Prinz, F. B., Fasching, R. J. 2007; 9 (6): 845-853

Abstract

A programmable and biodegradable drug delivery device is desirable when a drug needs to be administered locally. While most local drug delivery devices made of biodegradable polymers relied on the degradation of the polymers, the degradation-based release control is often limited by the property of the polymers. Thus, we propose micro-geometry as an alternative measure of controlling drug release. The proposed devices consist of three functional layers: diffusion control layer via micro-orifices, diffusion layer, and drug reservoir layers. A micro-fabrication technology was used to shape an array of micro-orifices and micro-cavities in 85/15PLGA layers. A thin layer of fast degrading 50/50PLGA was placed as the diffusion layer between the 85/15PLGA layers to prevent any burst-type release. To modulate the release of the devices, the dimension and location of the micro-orifices were varied and the responding in vitro release response of tetracycline was monitored over 2 weeks. The release response to the different micro-geometry was prominent and further analyzed by FEM simulation. Comparison of the experiments to the simulated results identified that the variation of micro-geometry influenced also the volume-dependent degradation rate and induced the osmotic pressure.

View details for DOI 10.1007/s10544-007-9097-8

View details for Web of Science ID 000250462200009

View details for PubMedID 17577671