Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri NATURE NEUROSCIENCE Zhang, F., Prigge, M., Beyriere, F., Tsunoda, S. P., Mattis, J., Yizhar, O., Hegemann, P., Deisseroth, K. 2008; 11 (6): 631-633

Abstract

The introduction of two microbial opsin-based tools, channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), to neuroscience has generated interest in fast, multimodal, cell type-specific neural circuit control. Here we describe a cation-conducting channelrhodopsin (VChR1) from Volvox carteri that can drive spiking at 589 nm, with excitation maximum red-shifted approximately 70 nm compared with ChR2. These results demonstrate fast photostimulation with yellow light, thereby defining a functionally distinct third category of microbial rhodopsin proteins.

View details for DOI 10.1038/nn.2120

View details for Web of Science ID 000256133700007

View details for PubMedID 18432196

View details for PubMedCentralID PMC2692303