Purified hematopoietic stem cell grafts induce tolerance to alloantigens and can mediate positive and negative T cell selection PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Shizuru, J. A., Weissman, I. L., Kernoff, R., Masek, M., Scheffold, Y. C. 2000; 97 (17): 9555-9560


Engraftment of allogeneic bone marrow (BM) has been shown to induce tolerance to organs genotypically matched with the BM donor. Immune reconstitution after BM transplantation therefore involves re-establishment of a T cell pool tolerant to antigens present on both donor and host tissues. However, how hematopoietic grafts exert their influence over the regenerating immune system is not completely understood. Prior studies suggest that education of the newly arising T cell pool involves distinct contributions from donor and host stromal elements. Specifically, negative selection is thought to be mediated primarily by donor BM-derived antigen-presenting cells, whereas positive selection is dictated by radio-resistant host-derived thymic stromal cells. In this report we studied the effect of highly purified allogeneic hematopoietic stem cells (HSCs) on organ transplantation tolerance induction and immune reconstitution. In contrast to engraftment of BM that results in near-complete donor T cell chimerism, HSC engraftment results in mixed T cell chimerism. Nonetheless we observed that HSC grafts induce tolerance to donor-matched neonatal heart grafts, and one way the HSC grafts alter host immune responses is via deletion of newly arising donor as well as radiation-resistant host T cells. Furthermore, using an in vivo assay of graft rejection to study positive selection we made the unexpected observation that T cells in chimeric mice rejected grafts only in the context of the donor MHC type. These latter findings conflict with the conventionally held view that radio-resistant host elements primarily dictate positive selection.

View details for Web of Science ID 000088840500041

View details for PubMedID 10920206