New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Dominant non-coding repeat expansions in human disease.
Dominant non-coding repeat expansions in human disease. Genome dynamics Dick, K. A., Margolis, J. M., Day, J. W., Ranum, L. P. 2006; 1: 67-83Abstract
The general model that dominant diseases are caused by mutations that result in a gain or change in function of the corresponding protein was challenged by the discovery that the myotonic dystrophy type 1 mutation is a CTG expansion located in the 3' untranslated portion of a kinase gene. The subsequent discovery that a similar transcribed but untranslated CCTG expansion in an intron causes the same multisystemic features in myotonic dystrophy type 2 (DM2), along with other developments in the DM1 field, demonstrate a mechanism in which these expansion mutations cause disease through a gain of function mechanism triggered by the accumulation of transcripts containing CUG or CCUG repeat expansions. A similar RNA gain of function mechanism has also been implicated in fragile X tremor ataxia syndrome (FXTAS) and may play a role in pathogenesis of other non-coding repeat expansion diseases, including spinocerebellar ataxia type 8 (SCA8), SCA10, SCA12 and Huntington disease-like 2.
View details for DOI 10.1159/000092501
View details for PubMedID 18724054