Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer ONCOGENE Rodriguez-Gonzalez, A., Cyrus, K., Salcius, M., Kim, K., Crews, C. M., Deshaies, R. J., Sakamoto, K. M. 2008; 27 (57): 7201-7211

Abstract

Proteolysis targeting chimeric molecules (Protacs) target proteins for destruction by exploiting the ubiquitin-dependent proteolytic system of eukaryotic cells. We designed two Protacs that contain the peptide 'degron' from hypoxia-inducible factor-1alpha, which binds to the Von-Hippel-Lindau (VHL) E3 ubiquitin ligase complex, linked to either dihydroxytestosterone that targets the androgen receptor (AR; Protac-A), or linked to estradiol (E2) that targets the estrogen receptor-alpha (ERalpha; Protac-B). We hypothesized that these Protacs would recruit hormone receptors to the VHL E3 ligase complex, resulting in the degradation of receptors, and decreased proliferation of hormone-dependent cell lines. Treatment of estrogen-dependent breast cancer cells with Protac-B induced the degradation of ERalpha in a proteasome-dependent manner. Protac-B inhibited the proliferation of ERalpha-dependent breast cancer cells by inducing G(1) arrest, inhibition of retinoblastoma phosphorylation and decreasing expression of cyclin D1, progesterone receptors A and B. Protac-B treatment did not affect the proliferation of estrogen-independent breast cancer cells that lacked ERalpha expression. Similarly, Protac-A treatment of androgen-dependent prostate cancer cells induced G(1) arrest but did not affect cells that do not express AR. Our results suggest that Protacs specifically inhibit the proliferation of hormone-dependent breast and prostate cancer cells through degradation of the ERalpha and AR, respectively.

View details for DOI 10.1038/onc.2008.320

View details for Web of Science ID 000261384100007

View details for PubMedID 18794799