Skip to main content
Deep residual network for off-resonance artifact correction with application to pediatric body MRA with 3D cones. Magnetic resonance in medicine Zeng, D. Y., Shaikh, J. n., Holmes, S. n., Brunsing, R. L., Pauly, J. M., Nishimura, D. G., Vasanawala, S. S., Cheng, J. Y. 2019


To enable rapid imaging with a scan time-efficient 3D cones trajectory with a deep-learning off-resonance artifact correction technique.A residual convolutional neural network to correct off-resonance artifacts (Off-ResNet) was trained with a prospective study of pediatric MRA exams. Each exam acquired a short readout scan (1.18 ms ± 0.38) and a long readout scan (3.35 ms ± 0.74) at 3 T. Short readout scans, with longer scan times but negligible off-resonance blurring, were used as reference images and augmented with additional off-resonance for supervised training examples. Long readout scans, with greater off-resonance artifacts but shorter scan time, were corrected by autofocus and Off-ResNet and compared with short readout scans by normalized RMS error, structural similarity index, and peak SNR. Scans were also compared by scoring on 8 anatomical features by two radiologists, using analysis of variance with post hoc Tukey's test and two one-sided t-tests. Reader agreement was determined with intraclass correlation.The total scan time for long readout scans was on average 59.3% shorter than short readout scans. Images from Off-ResNet had superior normalized RMS error, structural similarity index, and peak SNR compared with uncorrected images across ±1 kHz off-resonance (P < .01). The proposed method had superior normalized RMS error over -677 Hz to +1 kHz and superior structural similarity index and peak SNR over ±1 kHz compared with autofocus (P < .01). Radiologic scoring demonstrated that long readout scans corrected with Off-ResNet were noninferior to short readout scans (P < .05).The proposed method can correct off-resonance artifacts from rapid long-readout 3D cones scans to a noninferior image quality compared with diagnostically standard short readout scans.

View details for DOI 10.1002/mrm.27825

View details for PubMedID 31115936