Transcriptomic Profiling of the Developing Cardiac Conduction System at Single-Cell Resolution. Circulation research Goodyer, W. R., Beyersdorf, B., Paik, D. T., Tian, L., Li, G., Buikema, J. W., Chirikian, O., Choi, S., Venkatraman, S., Adams, E. L., Tessier-Lavigne, M., Wu, J. C., Wu, S. M. 2019

Abstract

RATIONALE: The cardiac conduction system (CCS) consists of distinct components including the sinoatrial node (SAN), atrioventricular node (AVN), His bundle, bundle branches (BB) and Purkinje fibers (PF). Despite an essential role for the CCS in heart development and function, the CCS has remained challenging to interrogate due to inherent obstacles including small cell numbers, large cell type heterogeneity, complex anatomy and difficulty in isolation. Single-cell RNA-sequencing (scRNA-seq) allows for genome-wide analysis of gene expression at single-cell resolution.OBJECTIVE: Assess the transcriptional landscape of the entire CCS at single-cell resolution by scRNA-seq within the developing mouse heart.METHODS AND RESULTS: Wild-type, embryonic day 16.5 mouse hearts (n=6 per zone) were harvested and three zones of microdissection were isolated, including: Zone I - SAN region; Zone II - AVN/His region; and Zone III - BB/PF region. Tissue was digested into single cell suspensions, isolated, reverse transcribed and barcoded prior to high-throughput sequencing and bioinformatics analyses. scRNA-seq was performed on over 22,000 cells and all major cell types of the murine heart were successfully captured including bona fide clusters of cells consistent with each major component of the CCS. Unsupervised weighted gene co-expression network analysis led to the discovery of a host of novel CCS genes, a subset of which were validated using fluorescent in situ hybridization as well as whole mount immunolabelling with volume imaging (iDISCO+) in three-dimensions on intact mouse hearts. Further, subcluster analysis unveiled isolation of distinct CCS cell subtypes, including the clinically-relevant but poorly characterized "transitional cells" that bridge the CCS and surrounding myocardium.CONCLUSIONS: Our study represents the first comprehensive assessment of the transcriptional profiles from the entire CCS at single-cell resolution and provides a gene atlas for facilitating future efforts in conduction cell identification, isolation and characterization in the context of development and disease.

View details for DOI 10.1161/CIRCRESAHA.118.314578

View details for PubMedID 31284824