New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Enasidenib drives human erythroid differentiation independently of isocitrate dehydrogenase 2.
Enasidenib drives human erythroid differentiation independently of isocitrate dehydrogenase 2. The Journal of clinical investigation Dutta, R. n., Zhang, T. Y., Köhnke, T. n., Thomas, D. n., Linde, M. n., Gars, E. n., Stafford, M. n., Kaur, S. n., Nakauchi, Y. n., Yin, R. n., Azizi, A. n., Narla, A. n., Majeti, R. n. 2020Abstract
Cancer-related anemia is present in over 60% of newly diagnosed cancer patients and is associated with substantial morbidity and high medical costs. Drugs that enhance erythropoiesis are urgently required to decrease transfusion rates and improve quality of life. Clinical studies have observed an unexpected improvement in hemoglobin and red blood cell (RBC) transfusion-independence in AML patients treated with the isocitrate dehydrogenase 2 (IDH2) mutant-specific inhibitor, enasidenib, leading to improved quality of life without a reduction in AML disease burden. Here, we demonstrate that enasidenib enhanced human erythroid differentiation of hematopoietic progenitors. The phenomenon was not observed with other IDH1/2 inhibitors and occurred in IDH2-deficient CRIPSR-engineered progenitors independently of D-2-hydroxyglutarate. The effect of enasidenib on hematopoietic progenitors was mediated by protoporphyrin accumulation, driving heme production and erythroid differentiation in committed CD71+ progenitors rather than hematopoietic stem cells. Our results position enasidenib as a promising therapeutic agent for improvement of anemia and provide the basis for a clinical trial using enasidenib to decrease transfusion dependence in a wide array of clinical contexts.
View details for DOI 10.1172/JCI133344
View details for PubMedID 31895700