Hyperthermic spreading depressions in the immature rat hippocampal slice JOURNAL OF NEUROPHYSIOLOGY Wu, J., Fisher, R. S. 2000; 84 (3): 1355-1360

Abstract

Febrile seizures are the most common seizure type in children (6 mo to 5 yr). The pathophysiology of febrile seizures is unknown. Current genetic studies show that some febrile seizures result from channelopathies. We have performed electrophysiological experiments in in vitro hippocampal slices to test a novel hypothesis that a disordered regulation of ionic homeostasis underlies the genesis of febrile seizures. In transverse hippocampal CA1 slices from 104 rats, temperature increase from 34 degrees to 40 degrees C produced a series of spreading depressions (SDs), called hyperthermic SDs. The hyperthermic SDs were age-dependent, occurring in only 1/17 8-16 day-old animals, 44/49 17-60 day-old animals, and 11/20 rats older than than 60 days. The hyperthermic SDs usually occurred on the rising phase of the temperature. The mean temperature to trigger a first hyperthermic SD was 38.8 +/- 1.3 degrees C (mean +/- SD, n = 44). The hyperthermic SDs induced a reversible loss of evoked synaptic potentials and a dramatic decrease of input resistance. Neuronal and field epileptiform bursting occurred in the early phases of the hyperthermic SD. During hyperthermic SDs, pyramidal cell membrane potential depolarized by 38.3 +/- 4.9 mV (n = 20), extracellular field shifted negative 18.5 +/- 3.9 mV (n = 44), and extracellular K(+) rose reversibly to 43.8 +/- 10.9 mM (n = 6). Similar SDs could be evoked by ouabain or transient hypoxia with normal temperature. Tetrodotoxin could block initial epileptiform bursting, without blocking SDs. Hyperthermia-induced SDs should be investigated as possible contributing factors to febrile seizures.

View details for Web of Science ID 000089185200021

View details for PubMedID 10980008