HIF1a Regulates Early Metabolic Changes due to Activation of Innate Immunity in Nuclear Reprogramming. Stem cell reports Liu, C. n., Ruan, H. n., Himmati, F. n., Zhao, M. T., Chen, C. C., Makar, M. n., Chen, I. Y., Sallam, K. n., Mocarski, E. S., Sayed, D. n., Sayed, N. n. 2020; 14 (2): 192–200

Abstract

Innate immune signaling has recently been shown to play an important role in nuclear reprogramming, by altering the epigenetic landscape and thereby facilitating transcription. However, the mechanisms that link innate immune activation and metabolic regulation in pluripotent stem cells remain poorly defined, particularly with regard to key molecular components. In this study, we show that hypoxia-inducible factor 1a (HIF1a), a central regulator of adaptation to limiting oxygen tension, is an unexpected but crucial regulator of innate immune-mediated nuclear reprogramming. HIF1a is dramatically upregulated as a consequence of Toll-like receptor 3 (TLR3) signaling and is necessary for efficient induction of pluripotency and transdifferentiation. Bioenergetics studies reveal that HIF1a regulates the reconfiguration of innate immune-mediated reprogramming through its well-established role in throwing a glycolytic switch. We believe that results from these studies can help us better understand the influence of immune signaling in tissue regeneration and lead to new therapeutic strategies.

View details for DOI 10.1016/j.stemcr.2020.01.006

View details for PubMedID 32048999