Is all perfusion-weighted magnetic resonance imaging for stroke equal? The temporal evolution of multiple hemodynamic parameters after focal ischemia in rats correlated with evidence of infarction JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM Zaharchuk, G., Yamada, M., Sasamata, M., Jenkins, B. G., Moskowitz, M. A., Rosen, B. R. 2000; 20 (9): 1341-1351

Abstract

Although perfusion-weighted imaging techniques are increasingly used to study stroke, no particular hemodynamic variable has emerged as a standard marker for accumulated ischemic damage. To better characterize the hemodynamic signature of infarction. the authors have assessed the severity and temporal evolution of ischemic hemodynamics in a middle cerebral artery occlusion model in the rat. Cerebral blood flow (CBF) and total and microvascular cerebral blood volume (CBV) changes were measured with arterial spin labeling and steady-state susceptibility contrast magnetic resonance imaging (MRI), respectively, and analyzed in regions corresponding to infarcted and spared ipsilateral tissue, based on 2,3,5-triphenyltetrazolium chloride histology sections after 24 hours ischemia. Spin echo susceptibility contrast was used to measure microvascular-weighted CBV, which had a maximum sensitivity for vessels with radii between 4 and 30 microm. Serial measurements between 1 and 3 hours after occlusion showed no change in CBF (22 +/- 20% of contralateral, mean +/- SD) or in total CBV (78 +/- 13% of contralateral) in regions destined to infarct. However, microvascular CBV progressively declined from 72 +/- 5% to 64 +/- 11% (P < 0.01) during this same period. Microvascular CBV changes with time were entirely due to decreases in subcortical infarcted zones (from 73 +/- 9% to 57 +/- 14%. P < 0.001) without changes in the cortical infarcted territory. The hemodynamic variables showed differences in magnitude and temporal response, and these changes varied based on histologic outcome and brain architecture. Such factors should be considered when designing imaging studies for human stroke.

View details for Web of Science ID 000089069800009

View details for PubMedID 10994856