Striosomes Mediate Value-Based Learning Vulnerable in Age and a Huntington's Disease Model. Cell Friedman, A. n., Hueske, E. n., Drammis, S. M., Toro Arana, S. E., Nelson, E. D., Carter, C. W., Delcasso, S. n., Rodriguez, R. X., Lutwak, H. n., DiMarco, K. S., Zhang, Q. n., Rakocevic, L. I., Hu, D. n., Xiong, J. K., Zhao, J. n., Gibb, L. G., Yoshida, T. n., Siciliano, C. A., Diefenbach, T. J., Ramakrishnan, C. n., Deisseroth, K. n., Graybiel, A. M. 2020

Abstract

Learning valence-based responses to favorable and unfavorable options requires judgments of the relative value of the options, a process necessary for species survival. We found, using engineered mice, that circuit connectivity and function of the striosome compartment of the striatum are critical for this type of learning. Calcium imaging during valence-based learning exhibited a selective correlation between learning and striosomal but not matrix signals. This striosomal activity encoded discrimination learning and was correlated with task engagement, which, in turn, could be regulated by chemogenetic excitation and inhibition. Striosomal function during discrimination learning was disturbed with aging and severely so in a mouse model of Huntington's disease. Anatomical and functional connectivity of parvalbumin-positive, putative fast-spiking interneurons (FSIs) to striatal projection neurons was enhanced in striosomes compared with matrix in mice that learned. Computational modeling of these findings suggests that FSIs can modulate the striosomal signal-to-noise ratio, crucial for discrimination and learning.

View details for DOI 10.1016/j.cell.2020.09.060

View details for PubMedID 33113354