Nelfinavir induces radiation sensitization in pituitary adenoma cells CANCER BIOLOGY & THERAPY Zeng, J., See, A. P., Aziz, K., Thiyagarajan, S., Salih, T., Gajula, R. P., Armour, M., Phallen, J., Terezakis, S., Kleinberg, L., Redmond, K., Hales, R. K., Salvatori, R., Quinones-Hinojosa, A., Tran, P. T., Lim, M. 2011; 12 (7): 657–63


Pituitary adenomas with local invasion and high secretory activity remain a therapeutic challenge. The HIV protease inhibitor nelfinavir is a radiosensitizer in multiple tumor models. We tested nelfinavir as a radiosensitizer in pituitary adenoma cells in vitro and in vivo. We examined the effect of nelfinavir with radiation on in vitro cell viability, clonogenic survival, apoptosis, prolactin secretion, cell cycle distribution, and the PI3K-AKT-mTOR pathway. We evaluated tumor growth delay and confirmed nelfinavir's effect on the PI3K-AKT-mTOR pathway in a hind-flank model. Nelfinavir sensitized pituitary adenoma cells to ionizing radiation as shown by viability assays and clonogenic assay with an enhancement ratio of 1.2 (p < 0.05). There is increased apoptotic cell death, as determined by annexin-V expression and cleaved caspase-3 levels. Nelfinavir does not affect prolactin secretion or cell cycle distribution. In vivo, untreated tumors reached 4-fold volume in 12 days, 17 days with nelfinavir treatment, 27 days with radiation 6 Gy, and 41 days with nelfinavir plus radiation (one-way ANOVA p < 0.001). Decreased phospho-S6 on Western blotting in vitro and immunohistochemistry in vivo demonstrated nelfinavir inhibition of the PI3K-AKT-mTOR pathway. Our data suggests a promising combination therapy with nelfinavir plus radiation in pituitary adenomas, which should be investigated in clinical studies.

View details for DOI 10.4161/cbt.12.7.17172

View details for Web of Science ID 000295470800011

View details for PubMedID 21811091

View details for PubMedCentralID PMC5724381