Changes in genome architecture and transcriptional dynamics progress independently of sensory experience during post-natal brain development. Cell Tan, L. n., Ma, W. n., Wu, H. n., Zheng, Y. n., Xing, D. n., Chen, R. n., Li, X. n., Daley, N. n., Deisseroth, K. n., Xie, X. S. 2021

Abstract

Both transcription and three-dimensional (3D) architecture of the mammalian genome play critical roles in neurodevelopment and its disorders. However, 3D genome structures of single brain cells have not been solved; little is known about the dynamics of single-cell transcriptome and 3D genome after birth. Here, we generated a transcriptome (3,517 cells) and 3D genome (3,646 cells) atlas of the developing mouse cortex and hippocampus by using our high-resolution multiple annealing and looping-based amplification cycles for digital transcriptomics (MALBAC-DT) and diploid chromatin conformation capture (Dip-C) methods and developing multi-omic analysis pipelines. In adults, 3D genome "structure types" delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first post-natal month. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, we examine allele-specific structure of imprinted genes, revealing local and chromosome (chr)-wide differences. These findings uncover an unknown dimension of neurodevelopment.

View details for DOI 10.1016/j.cell.2020.12.032

View details for PubMedID 33484631