Microvasculature in murine tracheal allografts after combined therapy with clopidogrel and everolimus. Interactive cardiovascular and thoracic surgery Heim, C., Kuckhahn, A., Ramsperger-Gleixner, M., Nicolls, M. R., Weyand, M., Ensminger, S. M. 2021

Abstract

OBJECTIVES: Survival after lung transplantation is mainly limited by the development of chronic lung allograft dysfunction. Previous studies have suggested T-cell mediated proliferation and microvascular changes in experimental small airways models as potential therapeutic targets. The aim of this study was to assess microvascular changes in murine orthotopic tracheal allografts after treatment with everolimus alone or in combination with clopidogrel.METHODS: C57Bl/6 (H-2b) donor tracheas were orthotopically transplanted into CBA (H-2k) recipients. Mice received daily injections of everolimus (0.05mg/kg) alone or combined with clopidogrel (1mg/kg). Twenty-eight days after transplantation, ratio of the thickness of tracheal epithelium and lamina propria was measured as an indicator for chronic rejection. Additionally, graft oxygenation and graft perfusion were detected on postoperative days 4, 10 and 28. Quantitative reverse transcription polymerase chain reaction analysis was used for gene expression analysis.RESULTS: While syngeneic grafts showed a stable tissue pO2 and undisturbed microvascular perfusion, rejecting allografts had a drastic decline in both parameters as well as a flattened epithelium and an increased thickness of the lamina propria. Treatment with everolimus reduced allogeneic fibroproliferation, but had no protective effects on the microvasculature; polymerase chain reaction analysis indicated hypoxic stress and inflammation. Combining everolimus with clopidogrel improved microvascular integrity in the tracheal grafts, but had no synergistic effect in preventing obliterative bronchiolitis development.CONCLUSIONS: These data demonstrate that the ability of everolimus to reduce the development of post-transplant obliterative bronchiolitis is not caused by microvascular protection and has no synergistic effects with clopidogrel in acute airway rejection.

View details for DOI 10.1093/icvts/ivab021

View details for PubMedID 33550369