Time trajectories in the transcriptomic response to exercise - a meta-analysis. Nature communications Amar, D., Lindholm, M. E., Norrbom, J., Wheeler, M. T., Rivas, M. A., Ashley, E. A. 2021; 12 (1): 3471

Abstract

Exercise training prevents multiple diseases, yet the molecular mechanisms that drive exercise adaptation are incompletely understood. To address this, we create a computational framework comprising data from skeletal muscle or blood from 43 studies, including 739 individuals before and after exercise or training. Using linear mixed effects meta-regression, we detect specific time patterns and regulatory modulators of the exercise response. Acute and long-term responses are transcriptionally distinct and we identify SMAD3 as a central regulator of the exercise response. Exercise induces a more pronounced inflammatory response in skeletal muscle of older individuals and our models reveal multiple sex-associated responses. We validate seven of our top genes in a separate human cohort. In this work, we provide a powerful resource ( www.extrameta.org ) that expands the transcriptional landscape of exercise adaptation by extending previously known responses and their regulatory networks, and identifying novel modality-, time-, age-, and sex-associated changes.

View details for DOI 10.1038/s41467-021-23579-x

View details for PubMedID 34108459