RNA splicing programs define tissue compartments and cell types at single cell resolution. eLife Olivieri, J. E., Dehghannasiri, R., Wang, P. L., Jang, S., de Morree, A., Tan, S. Y., Ming, J., Ruohao Wu, A., Tabula Sapiens Consortium, Quake, S. R., Krasnow, M. A., Salzman, J. 2021; 10

Abstract

The extent splicing is regulated at single-cell resolution has remained controversial due to both available data and methods to interpret it. We apply the SpliZ, a new statistical approach, to detect cell-type-specific splicing in >110K cells from 12 human tissues. Using 10x data for discovery, 9.1% of genes with computable SpliZ scores are cell-type-specifically spliced, including ubiquitously expressed genes MYL6 and RPS24. These results are validated with RNA FISH, single-cell PCR, and Smart-seq2. SpliZ analysis reveals 170 genes with regulated splicing during human spermatogenesis, including examples conserved in mouse and mouse lemur. The SpliZ allows model-based identification of subpopulations indistinguishable based on gene expression, illustrated by subpopulation-specific splicing of classical monocytes involving an ultraconserved exon in SAT1. Together, this analysis of differential splicing across multiple organs establishes that splicing is regulated cell-type-specifically.

View details for DOI 10.7554/eLife.70692

View details for PubMedID 34515025