Determinants of SARS-CoV-2 entry and replication in airway mucosal tissue and susceptibility in smokers. Cell reports. Medicine Nakayama, T., Lee, I. T., Jiang, S., Matter, M. S., Yan, C. H., Overdevest, J. B., Wu, C., Goltsev, Y., Shih, L., Liao, C., Zhu, B., Bai, Y., Lidsky, P., Xiao, Y., Zarabanda, D., Yang, A., Easwaran, M., Schurch, C. M., Chu, P., Chen, H., Stalder, A. K., McIlwain, D. R., Borchard, N. A., Gall, P. A., Dholakia, S. S., Le, W., Xu, L., Tai, C., Yeh, T., Erickson-Direnzo, E., Duran, J. M., Mertz, K. D., Hwang, P. H., Haslbauer, J. D., Jackson, P. K., Menter, T., Andino, R., Canoll, P. D., DeConde, A. S., Patel, Z. M., Tzankov, A., Nolan, G. P., Nayak, J. V. 2021: 100421


Understanding viral tropism is an essential step towards reducing SARS-CoV-2 transmission, decreasing mortality from COVID-19, and limiting opportunities for mutant strains to arise. Currently, little is known about the extent to which distinct tissue sites in the human head & neck region and proximal respiratory tract selectively permit SARS-CoV-2 infection and replication. In this translational study, we discover key variabilities in the expression of ACE2 and TMPRSS2, essential SARS-CoV-2 entry factors, among the mucosal tissues of the human proximal airways. We show that SARS-CoV-2 infection is present in all examined head & neck tissues, with a notable tropism for the nasal cavity and tracheal mucosa. Finally, we uncover an association between smoking and higher SARS-CoV-2 viral infection in the human proximal airway, which may explain the increased susceptibility of smokers to developing severe COVID-19. This is at least partially explained by differences in IFN-beta1 levels between smokers and non-smokers.

View details for DOI 10.1016/j.xcrm.2021.100421

View details for PubMedID 34604819