New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Upstream Machine Learning in Radiology.
Upstream Machine Learning in Radiology. Radiologic clinics of North America Sandino, C. M., Cole, E. K., Alkan, C., Chaudhari, A. S., Loening, A. M., Hyun, D., Dahl, J., Imran, A. A., Wang, A. S., Vasanawala, S. S. 2021; 59 (6): 967-985Abstract
Machine learning (ML) and Artificial intelligence (AI) has the potential to dramatically improve radiology practice at multiple stages of the imaging pipeline. Most of the attention has been garnered by applications focused on improving the end of the pipeline: image interpretation. However, this article reviews how AI/ML can be applied to improve upstream components of the imaging pipeline, including exam modality selection, hardware design, exam protocol selection, data acquisition, image reconstruction, and image processing. A breadth of applications and their potential for impact is shown across multiple imaging modalities, including ultrasound, computed tomography, and MRI.
View details for DOI 10.1016/j.rcl.2021.07.009
View details for PubMedID 34689881