Increased Lower Extremity Injury Risk Associated With Player Load and Distance in Collegiate Women's Soccer. Orthopaedic journal of sports medicine Xiao, M., Nguyen, J. N., Hwang, C. E., Abrams, G. D. 2021; 9 (10): 23259671211048248

Abstract

There is limited research regarding the impact of workload on injury risk specific to women's soccer. Wearable global positioning system (GPS) units can track workload metrics such as total distance traveled and player load during games and training sessions. These metrics can be useful in predicting injury risk.To examine the relationship between injury risk and player workload as collected from wearable GPS units in National Collegiate Athletic Association (NCAA) Division I women's soccer players.Case-control study; Level of evidence, 3.Lower extremity injury incidence and GPS workload data (player load, total distance, and high-speed distance) for 65 NCAA Division I women's soccer players were collected over 3 seasons. Accumulated 1-, 2-, 3-, and 4-week loads and acute-to-chronic workload ratios (ACWR) were classified into discrete ranges by z-scores. ACWR was calculated using rolling averages and exponentially weighted moving averages (EWMA) models. Binary logistic regression models were used to compare the 7:28 rolling average and EWMA ACWRs between injured and noninjured players for all GPS/accelerometer variables. The prior 1-, 2-, 3-, and 4-week accumulated loads for all GPS/accelerometer variables were compared between the injured and uninjured cohorts using 2-sample t tests.There were a total of 53 lower extremity injuries that resulted in lost time recorded (5.76/1000 hours "on-legs" exposure time; 34 noncontact and 19 contact injuries). The prior 2-week (7242 vs 6613 m/s2; P = .02), 3-week (10,533 vs 9718 m/s2; P = .02), and 4-week (13,819 vs 12,892 m/s2; P = .04) accumulated player loads and 2-week (62.40 vs 57.25 km; P = .04), 3-week (90.97 vs 84.10 km; P = .03), and 4-week (119.31 vs 111.38 km; P = .05) accumulated total distances were significantly higher for injured players compared with noninjured players during the same time frames. There were no significant differences in player load, total distance, or high-speed distance ACWR between injured and noninjured players for both the rolling averages and EWMA calculations.Higher accumulated player load and total distance, but not ACWR, were associated with injury in women's soccer players.

View details for DOI 10.1177/23259671211048248

View details for PubMedID 34722786

View details for PubMedCentralID PMC8552401