ZEB2 Shapes the Epigenetic Landscape of Atherosclerosis. Circulation Cheng, P., Wirka, R. C., Clarke, L. S., Zhao, Q., Kundu, R., Nguyen, T., Nair, S., Sharma, D., Kim, H. J., Shi, H., Assimes, T., Kim, J. B., Kundaje, A., Quertermous, T. 2022

Abstract

Background: Smooth muscle cells (SMC) transition into a number of different phenotypes during atherosclerosis, including those that resemble fibroblasts and chondrocytes, and make up the majority of cells in the atherosclerotic plaque. To better understand the epigenetic and transcriptional mechanisms that mediate these cell state changes, and how they relate to risk for coronary artery disease (CAD), we have investigated the causality and function of transcription factors (TFs) at genome wide associated loci. Methods: We employed CRISPR-Cas 9 genome and epigenome editing to identify the causal gene and cell(s) for a complex CAD GWAS signal at 2q22.3. Subsequently, single-cell epigenetic and transcriptomic profiling in murine models and human coronary artery smooth muscle cells were employed to understand the cellular and molecular mechanism by which this CAD risk gene exerts its function. Results: CRISPR-Cas 9 genome and epigenome editing showed that the complex CAD genetic signals within a genomic region at 2q22.3 lie within smooth muscle long-distance enhancers for ZEB2, a TF extensively studied in the context of epithelial mesenchymal transition (EMT) in development and cancer. ZEB2 regulates SMC phenotypic transition through chromatin remodeling that obviates accessibility and disrupts both Notch and TGFß signaling, thus altering the epigenetic trajectory of SMC transitions. SMC specific loss of ZEB2 resulted in an inability of transitioning SMCs to turn off contractile programing and take on a fibroblast-like phenotype, but accelerated the formation of chondromyocytes, mirroring features of high-risk atherosclerotic plaques in human coronary arteries. Conclusions: These studies identify ZEB2 as a new CAD GWAS gene that affects features of plaque vulnerability through direct effects on the epigenome, providing a new thereapeutic approach to target vascular disease.

View details for DOI 10.1161/CIRCULATIONAHA.121.057789

View details for PubMedID 34990206