Dental Pulp-Derived Stem Cells Are as Effective as Bone Marrow-Derived Mesenchymal Stromal Cells When Implanted into a Murine Critical Bone Defect. Current stem cell research & therapy Vater, C., Männel, C., Bolte, J., Tian, X., Goodman, S. B., Zwingenberger, S. 2022

Abstract

Background While bone marrow-derived mesenchymal stromal cells (BM-MSCs) have been used for many years in bone tissue engineering applications, the procedure still has drawbacks such as painful collection methods and damage to the donor site. Dental pulp-derived stem cells (DPSCs) are readily accessible, occur in high amounts and show a high proliferation and differentiation capability. Therefore, DPSCs may be a promising alternative for BM-MSCs to repair bone defects. Objective The aim of this study was to investigate the bone regenerative potential of DPSCs in comparison to BM-MSCs in vitro and in vivo. Methods In vitro investigations included analysis of cell doubling time as well as proliferation and osteogenic differentiation. For the in vivo study 36 male NMRI nude mice were randomized into 3 groups: 1) control (cell-free mineralized collagen matrix (MCM) scaffold), 2) MCM + DPSCs and 3) MCM + BM-MSCs. Critical size 2 mm bone defects were created at the right femur of each mouse and stabilized by an external fixator. After 6 weeks animals were euthanized and microcomputed tomography scans (µCT) and histological analyses were performed. Results In vitro DPSCs showed a 2-fold lower population doubling time and a 9-fold higher increase in proliferation when seeded onto MCM scaffolds as compared to BM-MSCs, but DPSCs showed a significantly lower osteogenic capability than BM-MSCs. In vivo, the healing of the critical bone defect in NMRI nude mice was comparable among all groups. Conclusions Pre-seeding of MCM scaffolds with DPSCs and BM-MSCs did not enhance bone defect healing.

.

View details for DOI 10.2174/1574888X17666220215100732

View details for PubMedID 35168511