Self-regulation of the posterior cingulate cortex with real-time fMRI neurofeedback augmented mindfulness training in healthy adolescents: A nonrandomized feasibility study. Cognitive, affective & behavioral neuroscience Kirlic, N., Cohen, Z. P., Tsuchiyagaito, A., Misaki, M., McDermott, T. J., Aupperle, R. L., Stewart, J. L., Singh, M. K., Paulus, M. P., Bodurka, J. 2022

Abstract

Mindfulness training (MT) promotes the development of one's ability to observe and attend to internal and external experiences with objectivity and nonjudgment with evidence to improve psychological well-being. Real-time functional MRI neurofeedback (rtfMRI-nf) is a noninvasive method of modulating activity of a brain region or circuit. The posterior cingulate cortex (PCC) has been hypothesized to be an important hub instantiating a mindful state. This nonrandomized, single-arm study examined the feasibility and tolerability of training typically developing adolescents to self-regulate the posterior cingulate cortex (PCC) using rtfMRI-nf during MT. Thirty-four adolescents (mean age: 15 years; 14 females) completed the neurofeedback augmented mindfulness training task, including Focus-on-Breath (MT), Describe (self-referential thinking), and Rest conditions, across three neurofeedback and two non-neurofeedback runs (Observe, Transfer). Self-report assessments demonstrated the feasibility and tolerability of the task. Neurofeedback runs differed significantly from non-neurofeedback runs for the Focus-on-Breath versus Describe contrast, characterized by decreased activity in the PCC during the Focus-on-Breath condition (z = -2.38 to -6.27). MT neurofeedback neural representation further involved the medial prefrontal cortex, anterior cingulate cortex, dorsolateral prefrontal cortex, posterior insula, hippocampus, and amygdala. State awareness of physical sensations increased following rtfMRI-nf and was maintained at 1-week follow-up (Cohens' d = 0.69). Findings demonstrate feasibility and tolerability of rtfMRI-nf in healthy adolescents, replicates the role of PCC in MT, and demonstrate a potential neuromodulatory mechanism to leverage and streamline the learning of mindfulness practice. ( ClinicalTrials.gov identifier #NCT04053582; August 12, 2019).

View details for DOI 10.3758/s13415-022-00991-4

View details for PubMedID 35292905