New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Treatment of Critical Size Femoral Bone Defects with Biomimetic Hybrid Scaffolds of 3D Plotted Calcium Phosphate Cement and Mineralized Collagen Matrix.
Treatment of Critical Size Femoral Bone Defects with Biomimetic Hybrid Scaffolds of 3D Plotted Calcium Phosphate Cement and Mineralized Collagen Matrix. International journal of molecular sciences Culla, A. C., Vater, C., Tian, X., Bolte, J., Ahlfeld, T., Bretschneider, H., Pape, A., Goodman, S. B., Gelinsky, M., Zwingenberger, S. 2022; 23 (6)Abstract
To treat critical-size bone defects, composite materials and tissue-engineered bone grafts play important roles in bone repair materials. The purpose of this study was to investigate the bone regenerative potential of hybrid scaffolds consisting of macroporous calcium phosphate cement (CPC) and microporous mineralized collagen matrix (MCM). Hybrid scaffolds were synthetized by 3D plotting CPC and then filling with MCM (MCM-CPC group) and implanted into a 5 mm critical size femoral defect in rats. Defects left empty (control group) as well as defects treated with scaffolds made of CPC only (CPC group) and MCM only (MCM group) served as controls. Eight weeks after surgery, micro-computed tomography scans and histological analysis were performed to analyze the newly formed bone, the degree of defect healing and the activity of osteoclasts. Mechanical stability was tested by 3-point-bending of the explanted femora. Compared with the other groups, more newly formed bone was found within MCM-CPC scaffolds. The new bone tissue had a clamp-like structure which was fully connected to the hybrid scaffolds and thereby enhanced the biomechanical strength. Together, the biomimetic hybrid MCM-CPC scaffolds enhanced bone defect healing by improved osseointegration and their differentiated degradation provides spatial effects in the process of critical-bone defect healing.
View details for DOI 10.3390/ijms23063400
View details for PubMedID 35328820