New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Emerging NK cell therapies for cancer and the promise of next generation engineering of iPSC-derived NK cells.
Emerging NK cell therapies for cancer and the promise of next generation engineering of iPSC-derived NK cells. Journal for immunotherapy of cancer Maddineni, S., Silberstein, J. L., Sunwoo, J. B. 2022; 10 (5)Abstract
Adoptive cell therapy is a rapidly advancing approach to cancer immunotherapy that seeks to facilitate antitumor responses by introducing potent effector cells into the tumor microenvironment. Expanded autologous T cells, particularly T cells with engineered T cell receptors (TCR) and chimeric antigen receptor-T cells have had success in various hematologic malignancies but have faced challenges when applied to solid tumors. As a result, other immune subpopulations may provide valuable and orthogonal options for treatment. Natural killer (NK) cells offer the possibility of significant tumor clearance and recruitment of additional immune subpopulations without the need for prior antigen presentation like in T or B cells that could require removal of endogenous antigen specificity mediated via the T cell receptor (TCR and/or the B ecll receptor (BCR). In recent years, NK cells have been demonstrated to be increasingly important players in the immune response against cancer. Here, we review multiple avenues for allogeneic NK cell therapy, including derivation of NK cells from peripheral blood or umbilical cord blood, the NK-92 immortalized cell line, and induced pluripotent stem cells (iPSCs). We also describe the potential of engineering iPSC-derived NK cells and the utility of this platform. Finally, we consider the benefits and drawbacks of each approach and discuss recent developments in the manufacturing and genetic or metabolic engineering of NK cells to have robust and prolonged antitumor responses in preclinical and clinical settings.
View details for DOI 10.1136/jitc-2022-004693
View details for PubMedID 35580928