Developing high-affinity decoy receptors to treat multiple myeloma and diffuse large B cell lymphoma. The Journal of experimental medicine Miao, Y. R., Thakkar, K., Cenik, C., Jiang, D., Mizuno, K., Jia, C., Li, C. G., Zhao, H., Diep, A., Xu, Y., Zhang, X. E., Yang, T. T., Liedtke, M., Abidi, P., Leung, W., Koong, A. C., Giaccia, A. J. 2022; 219 (9)

Abstract

Disease relapse and treatment-induced immunotoxicity pose significant clinical challenges for patients with hematological cancers. Here, we reveal distinctive requirements for neutralizing TNF receptor ligands APRIL and BAFF and their receptor activity in MM and DLBCL, impacting protein translation and production in MM cells and modulating the translation efficiency of the ATM interactor (ATMIN/ACSIZ). Therapeutically, we investigated the use of BCMA decoy receptor (sBCMA-Fc) as an inhibitor of APRIL and BAFF. While wild-type sBCMA-Fc effectively blocked APRIL signaling in MM, it lacked activity in DLBCL due to its weak BAFF binding. To expand the therapeutic utility of sBCMA-Fc, we engineered an affinity-enhanced mutant sBCMA-Fc fusion molecule (sBCMA-Fc V3) 4- and 500-fold stronger in binding to APRIL and BAFF, respectively. The mutant sBCMA-Fc V3 clone significantly enhanced antitumor activity against both MM and DLBCL. Importantly, we also demonstrated an adequate toxicity profile and on-target mechanism of action in nonhuman primate studies.

View details for DOI 10.1084/jem.20220214

View details for PubMedID 35881112