Therapeutic effects of MSCs, genetically modified MSCs, and NFkB-inhibitor on chronic inflammatory osteolysis in aged mice. Journal of orthopaedic research : official publication of the Orthopaedic Research Society Kushioka, J., Toya, M., Shen, H., Hirata, H., Zhang, N., Huang, E., Tsubosaka, M., Gao, Q., Teissier, V., Li, X., Utsunomiya, T., Goodman, S. B. 2022

Abstract

The number of total joint replacements is increasing, especially in elderly patients, and so too are implant-related complications such as prosthesis loosening. Wear particles from the prosthesis induce a chronic inflammatory reaction and subsequent osteolysis, leading to the need for revision surgery. This study investigated the therapeutic effect of NF-kB decoy oligodeoxynucleotides (ODN), mesenchymal stem cells (MSCs), and genetically-modified NF-kB sensing interleukin-4 over-secreting MSCs (IL4-MSCs) on chronic inflammation in aged mice. The model was generated by continuous infusion of contaminated polyethylene particles into the intramedullary space of the distal femur of aged mice (15-17-month-old) for six weeks. Local delivery of ODN showed increased bone mineral density (BMD), decreased osteoclast-like cells, increased alkaline phosphatase (ALP)-positive area, and increased M2/M1 macrophage ratio. Local injection of MSCs and IL4-MSCs significantly decreased osteoclast-like cells and increased the M2/M1 ratio, with a greater trend for IL4-MSCs than MSCs. MSCs significantly increased ALP-positive area and BMD values compared to the control. The IL4-MSCs demonstrated higher values for both ALP-positive area and BMD. These findings demonstrated the therapeutic effects of ODN, MSCs, and IL4-MSCs on chronic inflammatory osteolysis in aged mice. The two MSC-based therapies were more effective than ODN in increasing the M2/M1 macrophage ratio, reducing bone resorption, and increasing bone formation. Specifically, MSCs were more effective in increasing bone formation, and IL4-MSCs were more effective in mitigating inflammation. This study suggests potential therapeutic strategies for treating wear particle-associated inflammatory osteolysis after arthroplasty in the elderly. This article is protected by copyright. All rights reserved.

View details for DOI 10.1002/jor.25434

View details for PubMedID 36031590