Skip to main content
Discovery of azaspirocyclic 1H-3,4,5-Trisubstitued pyrazoles as novel G2019S-LRRK2 selective kinase inhibitors. European journal of medicinal chemistry Lesniak, R. K., Nichols, R. J., Schonemann, M., Zhao, J., Gajera, C. R., Lam, G., Nguyen, K. C., Langston, J. W., Smith, M., Montine, T. J. 2022; 242: 114693

Abstract

Mutations in the Leucine Rich Repeat Protein Kinase 2 gene (LRRK2) are genetic predispositions for Parkinson's Disease, of which the G2019S (GS) missense mutation is the most common. GS-LRRK2 has a hyperactive kinase, and although numerous drug discovery programs have targeted the LRRK2 kinase, few have reached clinical trials. We recently reported on the discovery of a novel LRRK2 kinase inhibitor chemotype, 1H-pyrazole biaryl sulfonamides. Although both potent and selective GS-LRRK2 inhibitors, 1H-pyrazole biaryl sulfonamides are incapable of crossing the blood-brain barrier. Retaining the core 1H-pyrazole and focusing our efforts on a phenylsulfonamide bioisosteric replacement, we report the discovery and preliminary development of azaspirocyclic 1H-3,4,5-trisubstituted pyrazoles as potent and selective (>2000-fold) GS-LRRK2 kinase inhibitors capable of entering rodent brain. The compounds disclosed here present an excellent starting point for the development of more brain penetrant compounds.

View details for DOI 10.1016/j.ejmech.2022.114693

View details for PubMedID 36049274